

Neurobiology of Self-Harm in Borderline Personality Disorder

Christian Schmahl

Dept. of Psychosomatic Medicine and
Psychotherapy,
Central Institute of Mental Health
Mannheim, Germany

Non-suicidal self-injury (NSSI) in BPD

- Non-suicidal self injury (NSSI): deliberate destruction of body tissue without suicidal intent (APA, 2013)
- 50-80% of individuals with Borderline Personality disorder (Snir, Rafaeli, Gadassi, Berenson, & Downey, 2015) and 46.2-60% of mentally ill youth engage in NSSI (Groschwitz et al., 2015; Kaess et al., 2013)
- Long lasting damage for concerned individuals, higher risk for suicidal behavior (Guan, Fox, & Prinstein, 2012) and high costs for health care system (Wunsch, Kliem, & Kroger, 2014)

Non-suicidal self-injury in adolescence

Motives for NSSI in BPD

Assessment of fluctuating data in daily life: EMA

Ecological momentary assessment (EMA)

- Real life and real time data
- Avoiding recall bias
- Accurate tracking of fluctuating variables (e.g. affect, hormones)
- e.g. Smartphone App based interventions, daily diary
- Different forms of assessment:
 - Random prompts
 - Event based prompts
 - Mixed design

Source:https://www.movisens.co m/en/products/movisensxs/

Affective Dysregulation

Stiglmayr et al., Acta Psychatr Scand 2005

Santangelo et al.,
J Abnorm Psychology 2015

Change in Emotions after NSSI

Kranzler et al. 2018

EMA- Study Design

NSSI and ß-endorphin

- Endogenous Opioid System (EOS):
- Three classes of opioids: β-endorphin, enkephalin and dynorphin (μ-, δ-, and κ-opioid receptors; Dhawan et al., 1996)
- Activation ß-endorphin: social, emotional, or physical pain/ emotionally or physically positive experiences (Bresin & Gordon, 2013 for an overview)
- \rightarrow Can disturbance in β -endorphin be related to NSSI ?

Biosampling procedure

EMA-Study – Interpersonal Findings

Before I self-harmed/since the last prompt, someone	Total number	% of NSSI prompts							
Negative events									
criticised me	13	10.1 %							
rejected/ excluded me	19	14.7%							
ignored my needs or feelings	24	18.6%							
behaved angry or aggressive towards me	14	10.9%							
let me down/ disappointed me	23	17.8%							
none of the above	90	69.8%							
Positive events									
suported/ helped me	3	2.3%							
showed me affection	10	7.8%							
respected my needs or feelings	6	4.7%							
gave me their attention or time	18	14.0%							
was interested in me, understood me	12	9.3%							
none of the above	110	85.3%							

EMA-Study – Interpersonal Findings

Hyp. 1: Negative interpersoal events predict higher probability of NSSI events.

Hyp. 2: NSSI reduces probability of negative social events (negative social reinforcement).

Hyp. 3: NSSI increases probability of positive social events (positive social reinforcement).

Borderline PD

PTSD

Meta-analysis of regions with positive (red) and negative (blue) response to emotional stimuli (significant with correction)

Pain sensitivity and Stress in BPD

Ludäscher et al., Psychiatry Res 2007

Cortisol-Stressreagibility and NSSI

Meta-Analysis Pain sensitivity and NSSI

	Symptom Group			Healthy Control Group			Std. Mean Difference	Std. Mean Difference	
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Kemperman et al. 1997	3.49	1.8	26	3.7	0.49	7	5.3%	-0.13 [-0.96, 0.71]	
Bungert et al. 2015	4.4	1.7	20	4.6	1.4	20	7.6%	-0.13 [-0.75, 0.49]	
Smith 2014	32.71	18.36	17	36.68	19.26	22	7.4%	-0.21 [-0.84, 0.43]	
Hamza et al. 2014	8.19	1.98	56	8.88	1.3	26	9.7%	-0.38 [-0.85, 0.09]	
Weinberg & Klonsky 2012	3.16	3.45	39	4.51	2.96	33	9.7%	-0.41 [-0.88, 0.06]	
McCoy et al. 2010	48.64	21.69	11	58.55	21.11	33	6.7%	-0.46 [-1.15, 0.23]	
Niedtfeld et al. 2010	5	1.2	23	5.5	0.77	26	8.2%	-0.49 [-1.06, 0.08]	
Franklin et al. 2011	7.13	1.71	16	8.2	1.59	10	5.5%	-0.62 [-1.43, 0.19]	
Franklin et al. 2012	7.04	1.81	25	8.32	1.37	47	9.2%	-0.82 [-1.33, -0.32]	
Kluetsch et al. 2012	47.3	13.78	25	63.93	19	22	7.7%	-1.00 [-1.61, -0.39]	· · · · · · · · · · · · · · · · · · ·
Ludäscher et al. 2009	19.6	16.6	12	40.7	18.9	21	5.9%	-1.14 [-1.90, -0.37]	
Russ et al. 1999	3.87	1.89	41	6	1.5	20	8.1%	-1.19 [-1.76, -0.61]	
Schmahl et al. 2006 *	44.2	2.08	12	46.7	1.39	12	4.8%	-1.36 [-2.27, -0.46]	T
Schmahl et al. 2004	16.4	17.39	10	50.4	15.72	14	4.0%	-2.00 [-3.02, -0.98]	
Total (95% CI)			333			313	100.0%	-0.68 [-0.91, -0.44]	•
Heterogeneity: Tau ^a = 0.09; Chi ^a	= 24.62, df =	13 (P =	0.03); 1	° = 47%					1 1 1 1
Test for overall effect: Z = 5.60 (P < 0.00001)								Lower Pain Intensity Greater Pain Intensity

König et al. 2016

Neural Pain Processing in BPD

Schmahl et al., Arch Gen Psychiatry 2006

Emotion Regulation and Pain in BPD

Emotion Regulation and Incision in BPD

Role of Tissue Injury

The role of seeing blood and perspective (self/other)

	Self-inflicted & no blood (n=20)	Other-inflicted & no blood (n=20)					
	Self-inflicted & blood (n=20)	Other-inflicted & blood (n=20)					
1	BL2 Script Pain P1 P2	P3 P4 P5 P6 P7 P8 P9					
	~45 min						

Self-injury and Pain – Interim Summary

- Reduced pain sensitivity: yes
- Reduction of stress and amygdala activity by pain stimuli: yes
- Influence of tissue injury: (no)
- Influence of seeing blood: (yes)
- Role of perspective (self/other):

Social Exclusion and BPD

Domsalla et al. 2014

Social Exclusion and NSSI

Groschwitz et al. 2016

Social Exclusion and Pain

Can these mechanisms be modified?

Pain sensitivity and Remission

29 current BPD19 remitted BPD22 healthy controls

Changes of pain-related mechansims in remission

- No strong increase of urge for NSSI after stress induction
- No relation between painfulness and stress reduction

Changes of pain-related mechanims after psychotherapy

Negative pictures + pain

Assessment of longitudinal changes

Summary

- NSSI is clearly related to reduced pain sensitivity
- Underlying neural mechanisms point to a dysregulation of the prefrontal-amygdala axis
- Remission and psychotherapy can change these mechanisms (back to normal)
- Better understanding of neurobiological correlates of NSSI helps to de-stigmatize behavior and improve psychotherapy

Thanks to coworkers, collaborators and funders

Central Institute of Mental Health, Mannheim

Lisa Stoerkel

Dr. Inga Niedtfeld

Dr. Johanna Hepp

University of Ulm

Dr. Alexander
Karabatsiakis and his lab

Bundesministerium für Bildung und Forschung

